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ABSTRACT

Organising a collection of images requires an intensive and time

consuming human effort. We present here a framework to classify

dynamically collections of images without a priori content knowl-

edge. Our work is based on active learning techniques: unlabeled

samples are selected iteratively one by one, and a knn-evidential

classifier make a proposition of label at each step. Users can ini-

tialize, remove or merge classes and may correct the propositions.

The Transferable Belief Model framework offers us a complete for-

mal model to express jointly the classifier and different sampling

strategies such as positivity, ambiguity and diversity. Our aims are

to study these different sampling strategies in order to minimize the

error rates as well as the user cognitive charge according to the dis-

tribution of the endeavor over time.

1. INTRODUCTION

The French National Audiovisual Institute (INA) missions are to

preserve the French audiovisual heritage, insure its exploitation and

make it more readily available. To achieve these objectives, archivists

identify and annotate day by day a sample of the French TV pro-

grams over a set of more than 100 broadcasted channels. Then, they

structure and organize by themes and collections the wholeness of

INA’s corpora, which represents about 2M of hours of TV programs

and 100,000 hours of radio. But, INA owns also more than 2M of

pictures and around four hundred thousands of them have been al-

ready scanned for an upcoming human annotation. These pictures

have few contextual information (who, when, where), and no fine

date-stamping. As a consequence, it is not possible to make any

temporal clustering like in common system of picture management.

Moreover, archivists may not have any knowledge of their content

before starting the annotation. The work presented in this paper is

focused on the creation of a user supervised tool to help archivists

in the pre-annotation task, i.e. the creation of groups (or classes) of

pictures for semantic labeling.

This kind of tool deals with the well-known problem of ”seman-

tic gap”. Indeed, the similarity between the pictures perceived by

humans does not necessarily match the similarity computed in a fea-

ture description space. To make things worse, semantic concepts are

specific to each user and may even differ according to users’ mood.

Actually, numerous methods attempt to reduce the semantic gap

by making statistical or probabilistic associations of low level vi-

sual features to high level concepts. But these technologies may

not be ready yet to match industrial constraints at INA for several

reasons. First, the number of concepts used for the annotation is

around 20,000 while the maximum number of concepts computable

is around 1000. Moreover, computable concepts do usually not match

concepts used by archivists for annotating documents. And because

the annotation is manual, the quality required is very high: no error

is accepted during the process. To respond to this constraint of high

accuracy, our system uses principles of active learning in relevant

feedback (RF): users may modify the proposition of the system at

any time and then the classification process adapts dynamically.

We choose to formulate our problem in the Transferable Belief

Model (TBM) because this formalisation lets us take into account

imprecision, uncertainty and conflict inherent to the visual features

description. Within our framework, we design an image classifier

which formulates a distance rejection by all classes and potential

labeling in a class. Moreover, this evidential active learner lets us

build several sampling strategies. We propose to use multiple crite-

ria: positivity, ambiguity and diversity to select the photos presented

to the user at each step.

In the first part of this paper, we describe our evidential frame-

work of classification with the TBM formalism. Then, we present

the graphic user interface, and experiments on different sampling

strategies. Finally, we analyze and comment our work and conclude

on the perspectives offered by our framework.

2. APPLICATION CONSTRAINTS

At the beiginning of a work session, an user will generally have no

idea about the images content, the number and the the kind of classes

he could define. He probably will hesitate and make some mistakes

or correct a previous decisions. Indeed, the concept of each class is

refined at each new labeled image and it is often at the end of the pro-

cess, when all images have been seen, that the choice of the classes

may be confirmed in the user mind. Then, the system must be readily

adaptable and must offer all the classical editing functionalities:

• user can create, suppress, split and merge the labeled classes

as often as he wishes,

• each image should be easily moved in another class, allowing

the user to change his mind at any time during the process of

classification

The system should take into account instantaneously any user mod-

ification. Moreover, the system must offer ways to give a low cog-

nitive charge to the user, in order to minimize his effort. In this

direction, the system must be able to bring out several suggestions

of labeled classes:

• focused on one class, if the user wants to find all the potential

images in,

• or focused on several classes if he wants to disambiguate

them.



Finally, a complete image classification system must deal with

the distance rejection and the diversity of visual content.

• the system must be able to detect and propose potential new

classes if the content is very dissimilar with all the labeled

classes,

• moreover, it must be possible to put eventually these dissimi-

lar images in an existing labeled class, and as a consequence

the classifier should be able to deal with multi prototype clas-

sification.

These two last points are main issues because the distance rejection

is not so often taking into account, and multiclass classification is

a real challenge. In this first approach, we suppose that each image

belongs to an unique class, corresponding to its ”dominant meaning”

from the user point of view.

Moreover, we will show further that this information of visual

diversity may be very useful in strategy sampling.

3. THEORITICAL ISSUES

Unsupervised methods like in [1] aggregate visual descriptors in the

associated feature space. But it’s not certain that the clusters map the

semantic classes generated manually by an user. If the user wants to

create classes with heterogeneous visual content, this method is not

well appropriate.

With automatic process, the quality of the created clusters can

be very disappointing, and the system may be rejected by the user.

Some semi-supervised clustering methods allow the user to partially

control the system. For example in [2], [3] the system asks the user

to validate or not couples of pictures. But, if this method is well

suited to mono prototype classes, it may not be relevant for compos-

ite classes.

The work describes in [4] is very close to our targets. In this

method, the classes or clusters are initialized by a hierarchical clus-

tering algorithm. The user can optimize the classification by a multi-

class classifier based on SVM. But in such methods, the number of

classes is given, making difficult the dynamical creation or suppres-

sion of classes. Generally, for converging to an acceptable class ar-

rangement, it is required to consider a close world assumption. We

think that it may be interesting to consider the open word assump-

tion because it allows the system to accept a class of ”unclassified”

images, as the user may do in a manual process.

During the process, we would like that the action of the user are

restricted to move images or classes. Any parameters or thresholds

will be hidden from the user who should only concentrate on the

semantic of his classification

To solve this iterative (interactive) process of classification ac-

cording to all these constraints, we have chosen active learning meth-

ods. Active learning systems receive a lot of interest from academic

and industry because they offer a promising solution to the seman-

tic gap problem. In fact, contrary to the early systems, focused on

fully automatic strategies, these approaches allow the introduction

of human computer interaction into Content-Based Image Retrieval

(CBIR) like in [5], [6]. For instance, due to its good generaliza-

tion ability, relevance feedback (RF) based classification on support

vector machine (SVM) learning methods has become popular to im-

prove retrieval performance in CBIR systems using feature repre-

sentation. Ideally, the system feedback should provide most useful

samples for the system and a user has to give binary labels indicating

whether or not the photo belongs to the query concept.

Principles are similar in our case. For each image, the system

will give a suggestion of classification into an existing labeled class,

and the user decides to invalidate it or not. The aim is to limit effort

of the user by selecting valuable samples. Usually, active learning is

based on a combination of a two modules.

• A learning level to train a classifier on labeled samples.

• A sampling level to select samples for users to label before

passing it to the learning system for next iteration.

Therefore, make up an active learning system represents a double

challenge. The learning engine is crucial for achieving good clas-

sification performance with limited training data, and the sampling

engine must choose the most valuable samples for converging to sat-

isfying results. Selecting the most valuable samples at each step of

classification can be called ”sampling strategy”. In the state of the

art, different strategies are defined for choosing a sample in [7], [8].

Most Positive (or error reduction strategy): this strategy chooses

firstly the samples which have the highest value for labeling

in the sampling engine.

Most Informative (or batch-simple strategy) aims at selecting un-

labeled data that will give most information to the current

classifier. Usually, the criterion corresponds to the Most Am-

biguous, i.e. a sample between two or several classes in the

feature space. For example, in [9] an informativeness-based

selection criterion is proposed for a SVM classification. The

basic idea is to select the most informative candidates whose

representations in the feature space induced by the kernel are

closest to the SVM hyperplane.

Diversity encourages the selection of unlabeled samples that are far

from all the labeled classes. This criterion removes the re-

dundancy. For instance, in [10] the redundancy of samples is

measured by the angles between the samples. This strategy

can be useful for discovering new classes or for the definition

of new prototypes in multiclass.

In the state of the art, these sampling criterions are rarely pro-

posed together. Ones prefer the positive reinforcement, others the

ambiguity. In the next part, we lean on the formal framework of

Transferable Belief Model to build an evidential classifier and ex-

press some of strategies above-cited together with unusual ones in

sampling strategies.

4. EVIDENTIAL ACTIVE LEARNER

4.1. Why an evidential one?

A main objective of an active learning system is to minimize the

number of selected samples used to optimize the classifier. In our

case, we would like minimizing the number of manual corrections

in order to reduce the effort asked to the user. Our aim is to reduce

the final error rate but also to be time effective as well: an user’s

correction is an action while a validation is not expressed. No change

in the process is a validation.

An usual choice in active learning is to take a SVM classifier.

But it’s difficult to express the distance rejection with SVM. More-

over, usually the classifier and the sampling strategy are conceived

independently in an active learning system. We prefer to express

the classifier and the sampling engine in an unified framework. We

choose the Transferable Belief Model, an elaboration on the Dempster-

Shafer theory of evidence because:

• it’s a formal framework fusion process based on firm ground,

• it enables an intuitive modeling of the knowledge,



• it respects an open-world assumption, i.e. an event not de-

scribed in an initial frame of reference,

• adding new information is readily possible.

From now, the system deals only with visual features without meta-

data, but later on, complementary information like the date-stamping

in EXIF metadata or face detection may be added to complete the

knowledge.

The classifier presented below is inspired from the Knn-Evidential

(Knn-Ev) classifier proposed by Denoeux [11].

Fig. 1. The framework: the classifier computes different measures

on the unlabeled images in accordance with the previous labeled

ones. These measures allow to select the most representative of the

current strategy, for example the Most Positive or the Most Rejected

or the Most Ambiguous. User must validate or not the suggestion of

label.

4.2. Formulation of the problem

Let’s considering an initial collection I0 = {i01, i02, · · · , i0N} of N

images to organise. Each image is associated with visual descriptors

and let X0 = {x0
1, x

0
2, · · · x0

N} be the set of corresponding vector

descriptors.

At a current step of classification t, a set of Q classes C =
{C1, C2, · · · , CQ} has been initialized by a user, and each one con-

tains at least one labeled image. Then, we have It = {itr1, i
t
r2, · · · , itR}

the resting set of R images to classify and It
l = {itl1, itl2, · · · , itL}

the set of the previously labeled images with their respective descrip-

tors Xt
l .

At each step of classification, the classifier has to make a sug-

gestion for an image i. The process involves distinct stages.

• A local fusion is processed for each class Cq of C in an inde-

pendently way. The aims is to obtain a local fusion of obser-

vations of the k nearest neighbors of i in the feature space.

• A global process takes into account all classes.

4.2.1. Local fusion of k nearest neighbors for one class

Let’s consider one class Cq containing some labeled images itq clas-

sified previously. Classifying an image i of It in a class Cq is de-

scribed by two states gathered in a frame of discernment:

Ωq = {Hq, Hq} (1)

with Hq (resp. Hq) the hypothesis ”i is a member of Cq” (resp. ”i

does not belong to Cq”). A basic belief assignment (BBA) is defined

on a set of propositions:

2Ωq = {∅, Hq, Hq, (Hq, Hq)} (2)

The set (Hq, Hq) explicitly represents the doubt concerning the real

state of the belonging to a class, and the emptyset ∅ symbolize a

eventual conflict between 2 information sources. Voluntarily, only

two propositions are taken into account, the belonging and the rejec-

tion:

m(∅|x) = m((Hq, Hq)|x) = 0 (3)

m(Hq|x) + m(Hq|x) = 1 (4)

Here, we have distinctions with the initial version of the Knn-Ev

classifier. Firstly, the fusion process is without normalization in re-

spect to the open-world assumption. Secondly, eq. 4 define a bayesian

BBA, i.e. all its focal elements are singletons [12]. The last differ-

ence is a local adaptation of masses at the borders of classes (see

section 4.2.2).

Let xj
q be a descriptor of a labeled image in Xt

l . Thus, it’s po-

tentially a nearest neighbor. We define:

m
xj

q (Hq|x) = 1 − α
j
q(x) (5)

m
xj

q (Hq|x) = 1 − m
xj

q (Hq|x) (6)

with a kernel function αj
q(x):

α
i
q(x) = α0.e

−(d(x,xj
q)/σ)β

(7)

where d(x, xj
q) is a distance in the features space between the labeled

element xj
q and x the image to classify. α0 is a weakening factor

arbitrarily fixed at 0.95 such as β which has been fixed to a small

value (β = 2). The radius parameter σ involves a level of confidence

around a labeled image.

By combining ”2-nn”, we have:

m
xj

q,xk
q (Hq|x) = (1 − α

j
q(x))(1 − α

k
q (x)) (8)

m
xj

q,xk
q (Hq|x) = 1 − (1 − α

j
q(x))(1 − α

k
q (x)) (9)

The aim of this formulation is to obtain the OR logical operator. If

x and xj
q are close, but x et xk

q are farther, (1 − αk
q (x)) will tend

toward 1 and mxj
q,xk

q (Hq|x) will tend toward (1− α
q
j(x)). In other

words, if the observations are very close to x, but only one is far, an

important masse on the hypothesis of belonging is preserved.

By considering a set of k nearest neighbor, the result of the com-

bination gives us a new BBA corresponding to the local fusion for

one class Cq:

m(Hq|x) =

k
Y

j=0

(1 − α
j
q(x)) (10)

m(Hq|x) = 1 −
k

Y

j=0

(1 − α
j
q(x)) (11)

4.2.2. Sigma estimation

We choose to maximize the ambiguity generated by a image in order

to accelerate the generalization process of the classifier. The aim is

that each prototype covers a maximum feature space.

A solution consists to have a local adaptation at the borders of

the classes. Thus, an individual σj
q is estimated by labeled sample.

When a labeled image xj
q is on a border of a class in the feature

space, its σj
q tends to be small. As a consequence, if xj

q is selected as

a k nearest neighbor, the σj
q will weaken its influence. By contrast,



a central labeled sample of a monoprototype class will have a long

σj
q which reach the border of the nearest neighbor class. Figure 2

illustrates how each σj
q estimated is adapted to the local context and

the class proximity. In this artificial example, the size of the sample

is proportional to the estimated σ. When two classes are very close

like the two ones on the up left corner, the local parameters σ tends

to be very small, and by comparison, the isolated classes like the one

on the bottom right corner tends to have all long local parameter σ.

The following method is used to estimate the σ of a current la-

beled sample x
q
j owned by one class Cq .

1. Find the nearest labeled sample neighbor xr
k among the other

R classes R = C\Cq . This xr
k is the most ambiguous sample

of x
q
j and the corresponding distance dmin = d(xq

j , x
r
k) is

kept.

2. A parameter f controls the maximal ambiguity level between

classes. The local σ
q
j is estimated (eq. 12) according to the

initial kernel definition (eq. 7).

σ
q
j =

dmin

2 β
√

log α0 − log f
(12)

Fig. 2. Local σ estimation on artificial dataset. 7 classes of sam-

ples are generated in the RGB color space with a multinormal dis-

tribution. The size of images varies proportionately with its local σ

estimated.

4.2.3. Global process for all classes

The BBAs for each class Cq must be now considered in the same

frame of discernment Ω = Ω1 × Ω2 × · · · × ΩQ. The Vacuous

Extension operator [13] allows to combine the BBAs of each sub-

frame of discernment Ωq , and gives one BBA containing in our case

2Q masses. Each mass represents a Q-tuple ω corresponding to one

combination of the basic hypothesis Aq (i.e. Hq or Hq) in each sub-

frame of discernment Ωq .

m
Ω(ω|x) = m

Ω((A1, A2, · · · , AQ)|x) =
Y

m
Ωq (Aq|x) (13)

The masses can be brought together in four categories describing

four kinds of propositions for an unlabeled image. The first case, is

when the belonging is located on one class Cq and a rejection is

indicated by all the others {Cr1
, Cr2

, · · · , CR}, with R = C\Cq .

We will identify them as positive propositions because they can be

used for labeling images. There are Q masses associated to this kind

of proposition:

m
Ω((Hq, Hr1

, Hr2
, · · · , HR)|x) =

m
Ωq (Hq|x)

Y

r 6=q

m
Ωr (Hr|x) (14)

Others masses represent conflict informations. In our context

of exclusive classification, only one class is possible for an image.

As a consequence, if some of the corresponding masses are different

from zero, these cases highlight a deficiency in the system. By dis-

ambiguating these conflicting samples, the classifier should improve

the quality of classification.

One mass represents a global conflict:

m
Ω((H1, H2, · · · , HQ)|x) =

Y

q

m
Ωq (Hq|x) (15)

The conflict can be more selective. Indeed, with our formulation

2Q − (2+Q) masses are available and describe all the local conflict

cases between P classes {Cp1
, Cp2

, · · · } of {P} a subset of the Q

classes with 2 ≤ card(P ) < card(Q), and R = {Cr1
, Cr2

, · · · }
the resting subset R = C\P .

m
Ω((Hp1

, Hp2
, · · · , HP , Hr1

, Hr2
, · · · , HR)|x) =

Y

p∈P

m
Ωp(Hp|x)

Y

r 6∈P

m
Ωr (Hr|x) (16)

A last situation corresponds at the case of the distance rejection

which means that the image is too far from all the classes, and a no

label may be proposed.

m
Ω((H1, H2, · · · , HQ)|x) =

Y

q

m
Ωq (Hq|x) (17)

4.2.4. Decisions and propositions

In our interactive system, the classifier makes a proposition of class

for each image and the user decides. For making a proposition,

the pignistic transformation ([14]) is used which consists to put in

a equiprobability way the mass of one proposition B of Ω on all

hypothesis contained in B. The pignistic probability is defined by:

BetP{mΩ}(ω|x) =
1

1 − mΩ(∅|x)

X

B⊆Ω,ω∈B

mΩ(B|x)

|B| (18)

where a ω is one of the proposition in Ω (one of the Q-tuple defined

in previous section 4.2.3). As a consequence, the classifier makes a

proposition ωd by taking the maximum of the pignistic probabilities.

ωd = arg max
wi∈Ω

BetP{mΩ}(wi|x) (19)

Concretely, ωd may indicate a distance rejection, a conflict case or a

positive case of labelisation in a class. However, if a user wants abso-

lutely a proposition of labelisation, it’s possible to take the maximum

of pignistic probability of the Q positive expressions (eq. 14):

ω
′
d = arg max

wi∈ΩP

BetP{mΩ}(wi|x) (20)

with ΩP a sub part of the frame of discernment Ω containing the all

positive Q-tuples.



4.3. Sampling Strategies

Images are validated one by one, so there are as many steps as im-

ages to classify. At each step, according to a preselected sampling

strategy, the classifier chooses one of the unlabeled samples, and

makes a suggestion of labeling in one class. According to section 3,

different sampling strategies are defined here, directly from the out-

put of the evidential classifier. The Most Positive (MP) (resp. Less

Positive (LP)) is the sample x which has the highest (resp. lowest)

maximum of pignistic probability on the hypothesis of a belonging

of only one class:

BetPmax(x) = max
wp∈ΩP

BetP{mΩ}(wp|x)

MP (Xt) = arg max
x∈Xt

BetPmax(x) (21)

with ωp a positive proposition in ΩP (eq. 14). This strategy is useful

for labeling very similar samples, by selecting the ”easiest” samples.

It is also the most intuitive approach for human use. Users may

prefer that the system shows good propositions at the beginning of

the process, because he doesn’t have yet a precise idea of the content

of the classes.

In the opposite way, treating the Less Positive first maximises

the error risk. This strategy can be useful for generalising faster.

The work is more difficult at the beginning of the process, but may

be easier at the end.

A second family of strategy is based on Most Conflicting (resp.

Less Conflicting) measures. The selected sample x is the one which

has the highest (resp. lowest) maximum of pignistic probability

on cases corresponding to a conflict between all or several classes

(eq. 15 and eq. 16). Thanks to the TBM formalism all conflicting

cases can be expressed, from the most global to the most selective

conflicting. The Most Global Conflicting is expressed by:

MGC(Xt) = arg max
x∈Xt

(ωgc|x) (22)

with ωgc the Global Conflicting Q-tuples (eq. 15). The MGC im-

age means to the user that the image can be potentially labeled in

one of the available classes, but the system doesn’t know in which

one. In sampling strategy, this case corresponds to a case of global

amgibuity.

The Most Local Conflicting (resp. Less Local Conflicting) is

expressed by:

BetPmax(x) = max
wlc∈ΩLC

BetP{mΩ}(wlc|x)

MLC(Xt) = arg max
x∈Xt

BetPmax(x) (23)

with ωlc one of the proposition in ΩLC a sub part of the frame of dis-

cernment Ω containing the all Local Conflicting Q-tuples (eq. 16).

This kind of strategy is useful for disambiguating the border between

the selected classes. Even this strategy gives hard work to the user, it

may bring up an improvement at the end of the classification. In sam-

pling strategy, this case corresponds to a case of selective amgibuity.

The Most Rejected (MR) is the sample x which has the highest

maximum of pignistic probability of all hypothesis:

MR(Xt) = arg max
x∈Xt

(ωr|x) (24)

with ωr the distance rejected Q-tuples (eq. 17). The MR strategy

can be useful for looking diversity in terms of visual content. In

fact, this strategy responds partially to the ”zero page” in the first

steps of a work session. At the beginning, when no labeled class has

yet be defined, the system chooses randomly one image. The MR

strategy will propose the most dissimilar ones. Then, the user can

decide to create a new class or to put it in a already defined class.

He can repeat this strategy to get an overview of the most dissimilar

content.

5. EXPERIMENTATIONS

5.1. The Graphic User Interface

For exploiting the capacity of the classifier, a Graphic User Inter-

face (GUI) has been designed to allow the user to interact with the

system. Unlabeled images appear on the vertical heap on the left of

the screen (see figure 3). Each class is represented by a horizontal

list of images on the right of the screen. The first image on the top

of the unlabeled list is the sample selected by the current strategy.

At the beginning of the process, the top left image moves out of the

heap to reach the center left of the screen and upscale for improv-

ing the user observation and analysis of its visual content. Then, it

moves smoothly from the left to the right towards the horizontal list

of the chosen class and integrate it. More positive is the image for

the classifier, shorter the scrutinizing time will be.

Colors are used in the front of each labeled lists to indicate to

the user the state of the classifier according to the current image: red

for the classes which reject the image, yellow if there is a conflict

and green if the class is chosen. The user may leave the process, or

drag and drop any image from a list to another if he doesn’t agree

with the current proposition.

Fig. 3. The GUI. Unlabeled images are in the vertical list and the

labeled classes are the horizontal lists. The unlabeled list is sorted

by the current strategy selected (in other panel not represented here),

and the first one is the current image in the center. After a scrutinis-

ing time, the image moves to the most positive class.

5.2. Typical User scenario

During a session, the user may choose the different strategy. A typi-

cal User Scenario may be the following:

1. zero page one image x0 is chosen randomly in X .



Database Label Number Comment

gt61 Elephant 50 heterogeneous

Dinosaur 100 homogeneous

Bus 100 homogeneous

Beach 100 composite

Place 100 very heterogeneous

People 46 composite

gt62 Elephant 50 heterogeneous

Flower 100 homogeneous

Food 100 composite

Horse 100 homogeneous

Mountain 100 homogeneous

People 46 composite

Table 1. The ground truth of two subsets selected from the Corel

database. ”Homogeneous” means that the visual content is very sim-

ilar. ”Heterogeneous” means that images can have very different

content and they are often linked only by the semantic. ”Composite”

means a mix of the two cases.

2. MR strategy: the most dissimilar images are presented to the

user and he decides to define a new class or to put it in an ex-

isting class according to the multi-class constraint (section 2).

3. MP strategy: user wants to grow up the classes for reinforcing

the visual content description.

4. MC strategies: adding a lot of images may increase the ambi-

guity between classes because the classes can be potentially

superposed in the feature space. The MC strategies will pro-

pose the more difficult at class boundary.

5.3. Experimental protocol

5.3.1. Database and visual features

The experiments below are executed on two subsets from the well-

known Corel database described table 1. Each set contains 6 classes.

Some of these classes, such as ”dinosaur”, ”flower”, ”bus” may have

very similar visual content. Others classes like ”mountain”, ”beach”,

”place”, ”elephant” and ”people” have more various ones. The dis-

tance used is a L2 between a vector containing a standard 64-bin

histogram description in the lab color space and a histogram of 8

orientations with 8 intensities [15].

The goal of the experiment is not to study the behavior of a par-

ticular dissimilarity measure, or the quality of the visual feature de-

scription, and not only to observe which strategy gives the lowest

error rate, but to analyse at which steps the errors are produced.

5.3.2. User simulation

First, a ground truth has been built with our supervised system for

each of the two sets of data. Two images by classes have been se-

lected randomly to initialize the zero page. Then, the system replays

the classification process automatically. At each step, a image is se-

lected by the current strategy, and if the suggestion of the classifier

doesn’t match the ground truth, an error is detected and counted, and

the image is pushed in the correct class. With these experiments,

we simulate a virtual user who makes the corrections that a real user

would do. Graphics are produced in order to analyze the effects of

the strategy on the final lowest error rate, as well as the progression

of the error count during the whole process.

5.4. Result and analysis

The graphic 4 shows the evolution of the error number at each step of

the classification on the first dataset. Six different strategies are com-

pared: MP, LP, MR, and the local ambiguous strategies for 2 classes

MLC2 and LLC2. The final error rate score is between 21.1% and

Fig. 4. Error number by step of classification from 6 different strate-

gies on gt61. One can notice 3 kind of distinctive behavior: rein-

forcement for MP, generalization for LP and MR, and mostly linear

for the local ambiguous strategies.

24.6%. It means that, for this database, the classifier gives, in best

case, about one wrong suggestion for 3-4 good decisions. If we com-

pare the ”best” and the ”worse” strategy, we observe a difference of

20 errors, which may be significative for 496 images classified.

However the most interesting part is the behavior of the strate-

gies during the whole process. The graphic 4 shows that there are 3

distinctive behaviors. A reinforcement behavior is observed for MP.

This strategy begins by labeling one third of the set without errors.

Then, the error rate increases progressively to reach at the end the

lowest error rate of all the available strategies. We may say that this

strategy is robust and minimize the global error rate by minimizing

the risk of the decision.

A generalization behavior concerns the LP and MR. These two

strategies select different kind of images, the ones with the most

diversity of content for MP, and the ones with the lower decision

weight according to the classifier. But the two strategies give a gen-

eralizing process. It means that they ask a lot of effort to the user at

the beginning, but in the last third part, only few work is asked to the

user and the number of errors keeps unchanged or constant.

A mostly linear behavior is observed for the ambiguous strate-

gies. For the MLC strategy we may observe that the linear behavior

tends to look like a ”S”. Errors occur sometimes at the beginning,

more often in the second third and less at the end of the process.

These three behaviors are observed also for the second set of

data gt62. But, on this second database, the behaviors are amplified.

There is a significant difference of 25 errors at the end between the

”best” and the ”worse” strategies. The MR strategy seems to be the

best compromise between generalization and final error number. The

”S” behavior of the MLC is accentuated. Finally, considering the

experiment on the ground truths, to optimize the global error rate,

the MP strategy can be chosen. A user be on hurry and brave will



Fig. 5. Error number by step of classification from 6 different strate-

gies on gt62. This experiment confirm the previous behavior for on

gt62.

take a MR strategy and the system may alert him when no error is

made from a long time to switch in a full automatic process.

These graphics may be correlated with the cognitive charge of

the user. Let considers a work session where a user must classify

a collection about several hundred images, which it seems to be a

realistic situation at INA. Nowadays it’s seems impossible to propose

a perfect classifier which make no errors because of the semantic

gap. Indeed, the main question is how much and when asking effort

to the user. Figure 6 takes an inventory of the characteristic profiles

of the errors. The first one (a), the linear one doesn’t seem to be very

interesting because the classifier makes wrong suggestions all the

time and the user must pay attention during the whole session. The

two next (b) and (c) characterise the reinforcement strategy which

involve the user attention at the end of the session. Selecting the

Most Positive at the beginning is useful to help the user to perceive

the content of the classes. A generalizing strategy (d) like MR or

LP could be efficient ones but, as seen in the previous experiment,

they generate a higher error rate then more effort is asked to users.

A perfect ”S” strategy (e) would be a good compromise by taking

advantages from the reinforcement and generalizing strategies.

Finally, if there are a lot of images to classify, a composite strat-

egy (f) could be a good solution to alternate peak of user attention

and inaction phases. This hypothesis will be analysed by considering

cognitive process in future works.

6. CONCLUSION AND FUTURE WORKS

In this paper, we have built a formal framework of decision. We have

defined jointly an evidential classifier and some sampling strategies

using the Transferable Belief Model. Thanks to this framework we

are able to express intuitively different sampling strategies and to test

them easily. We demonstrate that we have three kinds of behavior

which generate errors at different steps of the classification process.

The Less Positive strategy appears to have interesting capacity for a

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Typical error profiles.

generic process, such as the Most Reject strategy. The Most Positive

strategy minimizes the final error rate and may gain the confidence

of a user by doing only few errors at the beginning of the process.

In future work, we will define different BBA, notably by model-

ing the doubt.

We may also improve the classifier by refining parameter esti-

mation like σ, α0 and k, or by testing another kernel function and

descriptor distances.

Moreover, we are confident in pushing down the error rate by

combining strategies. Considering the Corel database, we find in

our experiments that only 7% of the images generates errors for all

strategies. Indeed, theoretically it should be possible to decrease

considerably the error rate, maybe by alternating or combining strate-

gies like in [16], or by defining other strategies.

7. REFERENCES

[1] Bertrand Le Saux and Nozha Boujemaa, “Unsupervised cate-

gorization for image database overview,” in Visual Information

and Information Systems, 2002, pp. 163–174.

[2] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised

and semi-supervised clustering: a brief survey,” Report of the

MUSCLE European Network of Excellence (FP6), 2004.

[3] N. Grira, M. Crucianu, and N. Boujemaa, “Fuzzy clustering

with pairwise constraints for knowledge-driven image catego-

rization,” in IEEE Proceedings on Vision, Image and Signal

Processing, 2006.

[4] Deok-Hwan Kim, Jae-Won Song, Ju-Hong Lee, and Bum-Ghi

Choi, “Support vector machine learning for region-based im-

age retrieval with relevance feedback,” ETRI Journal, vol. 29,

pp. 700 – 7002, Oct 2007.

[5] R. Veltkamp and M. Tanase, “Content-based image retrieval

systems: A survey,” 2000.

[6] N. Vasconcelos and M. Kunt, “Content-based imageg re-

trieval from image databases: Current solutions and future di-

rections,” in ICIP01, 2001, pp. III: 6–9.



[7] Edward Chang, Simon Tong, Kingsby Goh, and Chang-Wei

Chang, “Support vector machine concept-dependent active

learning for image retrieval,” in IEEE Transactions on Mul-

timedia, 2005.

[8] Michel Crucianu, Marin Ferecatu, and Nozha Boujemaa, “Rel-

evance feedback for image retrieval: a short survey,” Report of

the DELOS2 European Network of Excellence (FP6), 2004.

[9] S. Tong and E. Chang, “Support vector machine active learning

for image retrieval,” in ninth ACM international conference on

Multimedia, 2001.

[10] K. Brinker, “Incorporating diversity in active learning with

support vector machines,” in Twentieth International Confer-

ence on Machine Learning, 2003, pp. 59–66.

[11] Thierry Denoeux, “A k-nearest neighbor classification rule

based on dempster-shafer theory,” IEEE Transactions on Sys-

tems, Man and Cybernetics, vol. 25, pp. 804–813, 1995.

[12] Glenn Shafer, A Mathematical Theory Of Evidence, Princeton

University Press, 1976.

[13] Smets Ph., “Belief functions : the disjunctive rule of combi-

nation and the generalized bayesian theorem,” J. Approximate

Reasoning, pp. 1–35, 1993.

[14] Smets Ph., “Decision making in the tbm: the necessity of the

pignistic transformation,” J. Approximate Reasoning, pp. 133–

147, 2005.

[15] Marin Ferecatu, Image retrieval with active relevance feedback

using both visual and keyword-based descriptors, Ph.D. thesis,

University of Versailles Saint-Quentin-en-Yvelines, 2005.

[16] Yi Wu, I. Kozintsev, J.-Y. Bouguet, and C. Dulong, “Sam-

pling strategies for active learning in personal photo retrieval,”

in IEEE International Conference on Multimedia and Expo,

2006, pp. 529–532.


